direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C22.34C24, C22.41C25, C23.20C24, C24.483C23, C42.543C23, C22.1042+ 1+4, (C4×D4)⋊95C22, (C2×C4).44C24, C4⋊C4.283C23, C4⋊D4⋊65C22, C4⋊1D4⋊44C22, C22⋊C4.8C23, (C2×D4).449C23, C42.C2⋊40C22, C42⋊C2⋊89C22, C2.9(C2×2+ 1+4), (C23×C4).585C22, (C2×C42).918C22, (C22×C4).1181C23, (C22×D4).420C22, C22.D4⋊35C22, (C2×C4×D4)⋊74C2, C4.72(C2×C4○D4), (C2×C4⋊D4)⋊57C2, (C2×C4⋊1D4)⋊23C2, (C2×C42.C2)⋊39C2, C2.18(C22×C4○D4), (C2×C42⋊C2)⋊56C2, (C2×C4).715(C4○D4), (C2×C4⋊C4).700C22, C22.154(C2×C4○D4), (C2×C22.D4)⋊52C2, (C2×C22⋊C4).531C22, SmallGroup(128,2184)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C22.34C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=1, e2=c, g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, ede-1=gdg-1=bd=db, fef=be=eb, bf=fb, bg=gb, fdf=cd=dc, ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 1068 in 630 conjugacy classes, 396 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4⋊D4, C22.D4, C42.C2, C4⋊1D4, C23×C4, C23×C4, C22×D4, C2×C42⋊C2, C2×C4×D4, C2×C4⋊D4, C2×C22.D4, C2×C42.C2, C2×C4⋊1D4, C22.34C24, C2×C22.34C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C25, C22.34C24, C22×C4○D4, C2×2+ 1+4, C2×C22.34C24
(1 49)(2 50)(3 51)(4 52)(5 64)(6 61)(7 62)(8 63)(9 31)(10 32)(11 29)(12 30)(13 19)(14 20)(15 17)(16 18)(21 27)(22 28)(23 25)(24 26)(33 37)(34 38)(35 39)(36 40)(41 55)(42 56)(43 53)(44 54)(45 59)(46 60)(47 57)(48 58)
(1 19)(2 20)(3 17)(4 18)(5 40)(6 37)(7 38)(8 39)(9 53)(10 54)(11 55)(12 56)(13 49)(14 50)(15 51)(16 52)(21 57)(22 58)(23 59)(24 60)(25 45)(26 46)(27 47)(28 48)(29 41)(30 42)(31 43)(32 44)(33 61)(34 62)(35 63)(36 64)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 43)(2 32)(3 41)(4 30)(5 28)(6 45)(7 26)(8 47)(9 13)(10 50)(11 15)(12 52)(14 54)(16 56)(17 29)(18 42)(19 31)(20 44)(21 35)(22 64)(23 33)(24 62)(25 37)(27 39)(34 60)(36 58)(38 46)(40 48)(49 53)(51 55)(57 63)(59 61)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 23)(2 60)(3 21)(4 58)(5 54)(6 11)(7 56)(8 9)(10 40)(12 38)(13 45)(14 26)(15 47)(16 28)(17 57)(18 22)(19 59)(20 24)(25 49)(27 51)(29 61)(30 34)(31 63)(32 36)(33 41)(35 43)(37 55)(39 53)(42 62)(44 64)(46 50)(48 52)
(1 55 19 11)(2 56 20 12)(3 53 17 9)(4 54 18 10)(5 22 40 58)(6 23 37 59)(7 24 38 60)(8 21 39 57)(13 29 49 41)(14 30 50 42)(15 31 51 43)(16 32 52 44)(25 33 45 61)(26 34 46 62)(27 35 47 63)(28 36 48 64)
G:=sub<Sym(64)| (1,49)(2,50)(3,51)(4,52)(5,64)(6,61)(7,62)(8,63)(9,31)(10,32)(11,29)(12,30)(13,19)(14,20)(15,17)(16,18)(21,27)(22,28)(23,25)(24,26)(33,37)(34,38)(35,39)(36,40)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,19)(2,20)(3,17)(4,18)(5,40)(6,37)(7,38)(8,39)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(21,57)(22,58)(23,59)(24,60)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44)(33,61)(34,62)(35,63)(36,64), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,43)(2,32)(3,41)(4,30)(5,28)(6,45)(7,26)(8,47)(9,13)(10,50)(11,15)(12,52)(14,54)(16,56)(17,29)(18,42)(19,31)(20,44)(21,35)(22,64)(23,33)(24,62)(25,37)(27,39)(34,60)(36,58)(38,46)(40,48)(49,53)(51,55)(57,63)(59,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23)(2,60)(3,21)(4,58)(5,54)(6,11)(7,56)(8,9)(10,40)(12,38)(13,45)(14,26)(15,47)(16,28)(17,57)(18,22)(19,59)(20,24)(25,49)(27,51)(29,61)(30,34)(31,63)(32,36)(33,41)(35,43)(37,55)(39,53)(42,62)(44,64)(46,50)(48,52), (1,55,19,11)(2,56,20,12)(3,53,17,9)(4,54,18,10)(5,22,40,58)(6,23,37,59)(7,24,38,60)(8,21,39,57)(13,29,49,41)(14,30,50,42)(15,31,51,43)(16,32,52,44)(25,33,45,61)(26,34,46,62)(27,35,47,63)(28,36,48,64)>;
G:=Group( (1,49)(2,50)(3,51)(4,52)(5,64)(6,61)(7,62)(8,63)(9,31)(10,32)(11,29)(12,30)(13,19)(14,20)(15,17)(16,18)(21,27)(22,28)(23,25)(24,26)(33,37)(34,38)(35,39)(36,40)(41,55)(42,56)(43,53)(44,54)(45,59)(46,60)(47,57)(48,58), (1,19)(2,20)(3,17)(4,18)(5,40)(6,37)(7,38)(8,39)(9,53)(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(21,57)(22,58)(23,59)(24,60)(25,45)(26,46)(27,47)(28,48)(29,41)(30,42)(31,43)(32,44)(33,61)(34,62)(35,63)(36,64), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,43)(2,32)(3,41)(4,30)(5,28)(6,45)(7,26)(8,47)(9,13)(10,50)(11,15)(12,52)(14,54)(16,56)(17,29)(18,42)(19,31)(20,44)(21,35)(22,64)(23,33)(24,62)(25,37)(27,39)(34,60)(36,58)(38,46)(40,48)(49,53)(51,55)(57,63)(59,61), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,23)(2,60)(3,21)(4,58)(5,54)(6,11)(7,56)(8,9)(10,40)(12,38)(13,45)(14,26)(15,47)(16,28)(17,57)(18,22)(19,59)(20,24)(25,49)(27,51)(29,61)(30,34)(31,63)(32,36)(33,41)(35,43)(37,55)(39,53)(42,62)(44,64)(46,50)(48,52), (1,55,19,11)(2,56,20,12)(3,53,17,9)(4,54,18,10)(5,22,40,58)(6,23,37,59)(7,24,38,60)(8,21,39,57)(13,29,49,41)(14,30,50,42)(15,31,51,43)(16,32,52,44)(25,33,45,61)(26,34,46,62)(27,35,47,63)(28,36,48,64) );
G=PermutationGroup([[(1,49),(2,50),(3,51),(4,52),(5,64),(6,61),(7,62),(8,63),(9,31),(10,32),(11,29),(12,30),(13,19),(14,20),(15,17),(16,18),(21,27),(22,28),(23,25),(24,26),(33,37),(34,38),(35,39),(36,40),(41,55),(42,56),(43,53),(44,54),(45,59),(46,60),(47,57),(48,58)], [(1,19),(2,20),(3,17),(4,18),(5,40),(6,37),(7,38),(8,39),(9,53),(10,54),(11,55),(12,56),(13,49),(14,50),(15,51),(16,52),(21,57),(22,58),(23,59),(24,60),(25,45),(26,46),(27,47),(28,48),(29,41),(30,42),(31,43),(32,44),(33,61),(34,62),(35,63),(36,64)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,43),(2,32),(3,41),(4,30),(5,28),(6,45),(7,26),(8,47),(9,13),(10,50),(11,15),(12,52),(14,54),(16,56),(17,29),(18,42),(19,31),(20,44),(21,35),(22,64),(23,33),(24,62),(25,37),(27,39),(34,60),(36,58),(38,46),(40,48),(49,53),(51,55),(57,63),(59,61)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,23),(2,60),(3,21),(4,58),(5,54),(6,11),(7,56),(8,9),(10,40),(12,38),(13,45),(14,26),(15,47),(16,28),(17,57),(18,22),(19,59),(20,24),(25,49),(27,51),(29,61),(30,34),(31,63),(32,36),(33,41),(35,43),(37,55),(39,53),(42,62),(44,64),(46,50),(48,52)], [(1,55,19,11),(2,56,20,12),(3,53,17,9),(4,54,18,10),(5,22,40,58),(6,23,37,59),(7,24,38,60),(8,21,39,57),(13,29,49,41),(14,30,50,42),(15,31,51,43),(16,32,52,44),(25,33,45,61),(26,34,46,62),(27,35,47,63),(28,36,48,64)]])
44 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2Q | 4A | ··· | 4L | 4M | ··· | 4Z |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 |
kernel | C2×C22.34C24 | C2×C42⋊C2 | C2×C4×D4 | C2×C4⋊D4 | C2×C22.D4 | C2×C42.C2 | C2×C4⋊1D4 | C22.34C24 | C2×C4 | C22 |
# reps | 1 | 1 | 2 | 6 | 4 | 1 | 1 | 16 | 8 | 4 |
Matrix representation of C2×C22.34C24 ►in GL8(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
G:=sub<GL(8,GF(5))| [4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0] >;
C2×C22.34C24 in GAP, Magma, Sage, TeX
C_2\times C_2^2._{34}C_2^4
% in TeX
G:=Group("C2xC2^2.34C2^4");
// GroupNames label
G:=SmallGroup(128,2184);
// by ID
G=gap.SmallGroup(128,2184);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,456,1430,387,1123,136]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=1,e^2=c,g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,e*d*e^-1=g*d*g^-1=b*d=d*b,f*e*f=b*e=e*b,b*f=f*b,b*g=g*b,f*d*f=c*d=d*c,c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations